вид  
24 Сентября 2020г, Четверг€ — 89.2508,  $ — 76.3545загрузить приложение Armtorg.News для Андроидзагрузить приложение Armtorg.News для iphone

Семенов В.Ф., Сызранцев В.Н. Кран-клапан vs. Время собирать камни

11 Августа 2020
Семенов В.Ф., Сызранцев В.Н. Кран-клапан vs. Время собирать камни
Перед вами статья из нового выпуска журнала «Вестник арматуростроителя» № 4 (60). Речь пойдет об особенностях конструкции крана-клапана. Автор материала – Семенов Владимир Федорович, соавтор – Сызранцев Владимир Николаевич.

Из обзора структуры внутреннего производства ЗРА в стоимостном выражении [1] следует, что в общем объеме доля запорных клапанов, задвижек, шаровых кранов, дисковых затворов всех модификаций составляет, соответственно, 5,3 %, 34 %, 35,1 %, 1,3 %. Примерно такой же объем составляет импорт, но в уменьшенной доле задвижек и вентилей за счет увеличения объема поставки шаровых кранов. В производстве арматуры за рубежом доля шаровых кранов составляет более 50 %.


Сегодня претензии к ЗРА связывают с ухудшением по разным причинам выполнения основной запорной функции, а также с уменьшением ресурса, надежности и безопасности как для консервативных применений, так и для специальных областей с повышенными параметрами давления и температуры.

В статье [2] показано, что часто задвижки работают в области граничных и даже недопустимых контактных напряжений, ведущих к серьезным негативным последствиям. Это применимо и к шаровым кранам. Кроме этого, на качество ЗРА влияет давно сложившаяся система приемо-сдаточных испытаний на чистых средах. При объективном росте давлений и температур проблема задиров, трещин, схватывания при трении деталей затвора в реальной эксплуатации становится все более актуальной.

Последние десятилетия прогресс в отрасли шел, в основном, по пути применения новых композитных материалов, керамики и сопутствующих технологий типа нанесения упрочняющих покрытий и систем подачи уплотнительной смазки. Исключение составляют относительно недавно появившиеся на рынке новые типы арматуры в виде бесконтактных шаровых кранов «наклонно-поворотного действия» Orbit компании Cameron [3, 4], а также 3-х эксцентриковых сегментных поворотных затворов с ограниченным контактом.

В основательном обзоре [5] указывается, что «Сегментные краны продолжили линию на уменьшение объема трущихся поверхностей» и показали новые возможности. Краны типа Orbit имеют значительно продвинутые показатели по герметичности, температуре и ресурсу, а затворы характеризуются в целом лучшими массогабаритными параметрами, применимостью к сложным средам и гораздо меньшей стоимостью.

Увеличение числа типов арматуры с различными наборами перекрывающихся характеристик усложняет потребителю задачу выбора оптимальной ЗРА с учетом не только стоимости изделия, но и будущих затрат на его эксплуатацию. Поэтому важно сравнить эксплуатационные характеристики клиновых задвижек, шаровых кранов, запорных клапанов и 3-х эксцентриковых поворотных затворов с предлагаемой ниже инновационной арматурой.

Связь геометрии и кинематики с герметичностью и ресурсом ЗРА

В основу всех используемых типов конструкций ЗРА положена концепция герметизации путем создания напряженно-деформированного состояния материалов затвора – седла и запорного органа. При этом теория уплотнения контакта обычно трактуется как слияние контактных пятен в линию кольца уплотнения «нулевой» ширины. Мягкий контакт, как известно, значительно проигрывает в работе уже на средних давлениях, высоких и низких температурах и на средах с твердыми включениями, но выигрывает меньшими трудозатратами и стоимостью.

Герметичность с ресурсом связана режимом эксплуатации. Хорошо известно, что работа устройства на экстремальных режимах уменьшает ресурс, и наоборот. В стандарте [9] представлена зависимость среднего ресурса от силового определяющего параметра герметичности в виде удельной нагрузки для уплотнений металл-металл и фторопласта при давлениях до 40 МПа и температурах до 600 °С и до 225 °С соответственно.

Связь среднего ресурса Nц с необходимым удельным давлением на графике рисунка 2 стандарта [9] для уплотнения металл-металл действительна только до давлений 20 МПа и температур 350 °С. Для иных параметров, следуя стандарту [9], рекомендуется принимать Nц = 3 000, а необходимое удельное давление для обеспечения герметичности вентилей, задвижек и кранов рассчитывать по эмпирической формуле Д.Ф. Гуревича [6, 8]:

Семенов В.Ф., Сызранцев В.Н. Кран-клапан vs. Время собирать камни

(1)

где: ΔР – перепад давления; b – ширина кольца уплотнения; m, c, k – постоянные материала и среды.

Для наибольших значений ΔР (40…150 МПа) стандарт [8] требует уменьшения ширины кольца уплотнения до 0,7 мм, что влечет за собой, согласно формуле (1), применение повышенных удельных нагрузок. Уменьшение параметра b дает «упрощение процесса притирки и достижение наиболее полного совпадения поверхностей, а также большие возможности начального обжатия». [6, с. 559].

Запорная и регулирующая функции арматуры осуществляются поворотом вала управления, который кинематически связан с перемещением запорного органа относительно седла. Такое перемещение ответственно за выполнение двух различных физических процессов. Первый связан с изменением сечения седла от полного открытия прохода до полного перекрытия в момент контакта рабочего органа с седлом. Второй заключается в создании после касания напряженно-деформированного состояния контактных поверхностей затвора для обеспечения требуемой герметичности.

Практически во всех типах используемой арматуры эти два различных процесса осуществляются за одно перемещение, с одним законом действия сил на запорный орган по величине и направлению, одним структурно постоянным механизмом связи вала управления с запорным органом. Налицо противоречие, состоящее в том, что геометрия и кинематика вряд ли могут быть одновременно оптимальными для фазы изменения прохода и для фазы создания нужного напряжения на поверхностях контакта.

Фаза изменения прохода в арматуре наиболее удачно решена простым поворотом шара, диска или сегмента валом управления на 90° в пробковых кранах и поворотных затворах. Оптимальным условием максимальной герметичности затвора, наиболее полно раскрывающем потенциал упруго-пластических свойств материалов контакта, является необходимая сила давления запорного органа на седло, направленная ортогонально к его плоскости и отсутствие трения скольжения в затворе.

Лучший по герметичности и ресурсу затвор имеет вентиль, в котором контакт невращающегося золотника с седлом осуществляется их взаимным линейным сближением с углом давления 0°, когда сила давления по направлению совпадает с микроперемещением в момент контакта. В этом случае касательные компоненты тензора напряжений и трение скольжения запорного органа о седло отсутствуют.

Трение не только увеличивает непроизводительную работу и момент управления, но вызывает разрушение контактирующих поверхностей вследствие появления на них задиров, трещин, схватывания, вырывов, мостиков сварки. Такие явления особенно характерны для контакта металл-металл. Именно поэтому вентиль имеет наилучшие показатели герметичности, ресурса, надежности и безопасности, хотя и худшие параметры по полнопроходности и сопротивлению потоку.

Цифровое выражение преимуществ «вентильного» уплотнения отражено в таблице 11 «Предельно допустимые удельные нагрузки для различных материалов уплотнений» норматива [8]. В таблице приведены значения предельно допустимых удельных нагрузок qп для случаев с трением скольжения золотника о седло и без трения. Из нее следует, что qп в «вентильном» уплотнении без трения на порядок больше, чем с трением! Для стеллита это 1000 МПа против 80 МПа. Аналогичный максимальный норматив для расчета задвижек и шаровых кранов по стеллиту в 80 МПа заложен в стандарте [10, таблица 7 «Предельно допустимые удельные давления qп на уплотнительных кольцах арматуры»].

Соблюдение этого норматива в виде условия:

Семенов В.Ф., Сызранцев В.Н. Кран-клапан vs. Время собирать камни

не позволяет использовать повышенные удельные давления за счет выгодного уменьшения ширины кольца уплотнения при заданном перепаде в формуле (1).

На рисунке 1 в масштабе показаны предельно допустимые и расчетные удельные давления «вентильного» уплотнения кран-клапана и уплотнения сегментного крана при равном перепаде давления в 42 МПа и равных параметрах геометрии и материалов, вычисленные по указанным в списке литературы стандартам. Отсюда следует очевидный факт, что этот большой резерв использования удельного давления в поворотной арматуре возможен только с кинематикой раздельного 2-х фазного движения запорного органа.

Современные псевдовентильные системы уплотнения

С целью уменьшения трения скольжения на рынке появились новые конструкции ЗРА с «псевдовентильными» системами уплотнения в виде сегментных 3-х эксцентриковых затворов с уменьшенным трением рабочего органа о седло и шаровых кранов типа Orbit, в которых трение в рабочем органе отсутствует.

Семенов В.Ф., Сызранцев В.Н. Кран-клапан vs. Время собирать камни

3-х эксцентриковый сегментный поворотный затвор работает по схеме с единственным движением поворота сегмента без трения почти на 90° до начала контакта с седлом и последующего малого поворота с трением до 90° для силового создания напряжения в зоне контакта. Контактная зона образуется за счет эксцентриситетов и специальной сложной формы седла и контактирующей части сегмента. При этом распределенная по периметру седла сила давления сегмента переменна и по величине, и по направлению.

Это особенно видно в участках контакта вблизи «полюсов», приближенных к опорам сегмента. Силовой контакт происходит примерно под таким же углом давления и трением скольжения, как в шаровых кранах. Такой ограниченный по траектории контакт лучше, чем контакт задвижки и шарового крана, но значительно уступает вентильному контакту.

Поэтому из-за трения и плохой технологичности изготовления затвора с 3-мя эксцентриситетами его показатели по герметичности не превышают аналогичные показатели шарового крана. Однако такие затворы наряду с уменьшением массогабаритных данных показали хорошие перспективы по уменьшению износа за счет обратного тока среды, по регулированию и по работе со сложными средами с включениями (твердыми, вязкими, волокнистыми, сточными) [5].

Впервые работа арматуры с 2-х фазным движением запорного органа была осуществлена в шаровом кране Orbit «наклонно-поворотного действия» компании Cameron (рис. 3). В нем изменение прохода как обычно осуществляется поворотом шара на 90°, но бесконтактно с седлом, а силовой контакт шара с седлом осуществляется наклоном оси шара к седлу на нижней шаровой опоре.

Кран уверенно работает при давлении до 42 МПа, температуре до 600 °С и на средах с включениями. Однако наклон шара к седлу на фазе уплотнения не является безупречным, и такой контакт по эффективности далек от вентильного. В нем имеется значительная неравномерность контакта по периметру седла в зависимости от расстояния до нижней шаровой опоры.

Семенов В.Ф., Сызранцев В.Н. Кран-клапан vs. Время собирать камни

Кроме того, наклонный контакт очень критичен к износу в нижней опоре и точности позиционирования в ней. Небольшая потеря геометрии немедленно ведет к потере герметичности и снижению ресурса. В результате сложная нетехнологичная многозвенная ненадежная пространственная кинематика порождает большую себестоимость и цену, значительно превосходящую цену шарового крана.

Механизм переменной структуры как объединение поворотной идеи пробкового крана с системой уплотнения вентиля

Оптимальным решением отмеченных выше проблем является запатентованный простейший механизм переменной структуры (Variable Structure) и кран-клапан VS на его основе [13].

Результатом работы механизма в поворотной арматуре является двухфазное перемещение запорного органа, наподобие клапана Orbit. Однако вместо наклона на фазе уплотнения используется линейное малое перемещение (1..2 мм) запорного органа ортогонально к плоскости седла. При рациональных соотношениях звеньев это силовое замыкание практически эквивалентно вентильному контакту, т. к. отклонения от прямолинейности ничтожны и сравнимы с податливостью опор запорного органа.

На рисунке 4 показан разрез кран-клапана VS по плоскости, проходящей через ось потока и ось штока, в промежуточном состоянии операций открытия/закрытия, когда сегмент 3 перекрывает седло 2, но не касается его. В сегментном варианте геометрии затвора предлагается кран, в котором нижний и верхний валы сегмента 3 размещены с малым эксцентриситетом во вращающихся в корпусе 1 глухих втулках-обоймах 4, а втулки-обоймы 4 жестко соединены между собой элементом связи 5, проходящем снаружи корпуса 1. Соединенные втулки являются валом (штоком) управления с рукояткой привода.

Две степени свободы вращения и переключение структуры регулируются простыми упорами-ограничителями поворота втулок относительно корпуса и поворота сегмента относительно втулок на 10…15° (размещаются в области опор, не показаны). На фазе изменения прохода втулки и сегмент совместно поворачиваются до упоров на 90° относительно корпуса со сколь угодно малым зазором. В этот момент остается одна степень свободы, и механизм меняет свою структуру. Дальнейший поворот штока-втулок на малый угол эксцентрично смещает заторможенные от поворота валы сегмента на 1…2 мм по нормали к седлу 2.

Семенов В.Ф., Сызранцев В.Н. Кран-клапан vs. Время собирать камни

Отклонения от прямолинейности при оптимальном выборе параметров механизма ничтожны и ими можно пренебречь. За счет малого эксцентриситета происходит значительная мультипликация усилия управления в необходимую силу сдвига сегмента. Для ручного привода или привода рукояткой коэффициент усиления равен (без учета потерь на трение) отношению длины рукоятки к эксцентриситету (например, 300/1,5 = 200). Корпус и трубопровод не препятствуют повороту на 105° элемента связи 5.

Теоретически кинематика кран-клапана VS представляет собой сдвоенный плоский кривошипно-шатунный механизм (КШМ) с переключением структуры и, следовательно, с переключением характера движения сегмента-шатуна в каждом цикле открытия/закрытия арматуры. Замена КШМ на еще более простой механизм, как показал опыт применения в ДВС, вряд ли возможна.

Варианты исполнения кран-клапана VS

Предлагаемый механизм может быть применим к различным вариантам геометрии запорного органа – шару, сегменту, диску. Однако наибольший эффект для устоявшихся сфер применения достигается при сегментной форме запорного органа. В этом случае кран-клапан имеет большую преемственность к сегментному крану или сегментному затвору, где 85…90 % применяемых решений идентичны.

Налицо все специфические плюсы сегментного крана (рис. 5) – уменьшение массы и габарита, увеличение износостойкости за счет обратного тока, работа с вязкими, сыпучими, волокнистыми средами и стоками, возможная формовка сегмента штамповкой.

Однако, с другой стороны, отсутствие трения и появившийся тем самым малый зазор между корпусом и сегментом дает повод для серьезной критики. Как известно, в длительном открытом состоянии застойные зоны и зазоры забиваются мелкими включениями и ржавчиной. В данном случае этого можно легко избежать установкой в корпусе простого седла-скребка перпендикулярно основному седлу. Возможен вариант геометрии, когда элемент связи проходит внутри корпуса и представляет собой простой стержень по оси сегмента. В этом случае не нужно второе уплотнение, но кран-клапан становится неполнопроходным и с увеличенным сопротивлением потоку (аналогично плоскому дисковому затвору).

Возможен также вариант для более высоких давлений, характерных для арматуры технологии гидроразрыва. В этом случае запорный орган выполняется в виде шара, а проходящий внутри элемент связи имеет форму цилиндра, вращающегося эксцентрично в шаре, с отверстием для прохода среды.

Семенов В.Ф., Сызранцев В.Н. Кран-клапан vs. Время собирать камни

2-х фазный механизм допускает, согласно стандарту [8], различные варианты геометрии контактной зоны. В частности, конусный контакт металл-металл типа II или ножевой плоский контакт типа III с малой шириной кольца уплотнения менее 1 мм.

Примером высокой эффективности инновации является вариант выгодной модификации шаровых бытовых кранов с мягким седлом на воду и отопление. Изменение состоит в замене шара на штампованный из листа и в добавлении нижней опоры с втулками и уплотнением. Очевидны плюсы от потери массы шара, массы от несимметричности корпуса, уменьшения длины и от притирки только узкого пояска на сегменте.

Исключаются прикипания, вырывы, борозды от окалины на контактирующих поверхностях, уменьшается момент на рукоятке запорной арматуры, увеличивается реальная наработка на отказ. Получить отмеченные преимущества на основе крана Orbit весьма проблематично.

Сравнительные характеристики основных типов ЗРА с кран-клапаном VS

Представленные выше расчеты были выполнены для параметров уплотнения кран-клапана VS в сравнении с параметрами сегментного крана на цапфах при равной геометрии, материалах, параметрах среды, давлении 42 МПа. Расчет для кран-клапана проведен по методике для совпадающей с ним модели уплотнения вентиля [8, 9, 10, 11], а для сегментного крана – по методике для шаровых кранов [10, 12].

Семенов В.Ф., Сызранцев В.Н. Кран-клапан vs. Время собирать камни

Это позволяет оценить влияние новой кинематики на характеристики уплотнения. Расчеты показали, что минимальная ширина уплотнения b для сегментного крана составляет 8 мм, при которой удельное давление в 77 МПа чуть меньше предельно допустимого в 80 МПа. Ширина b для кран-клапана VS составляет 0,71 мм при расчетном удельном давлении в 256 МПа (допустимое 1 000 МПа). Средний ресурс, согласно стандартам, составляет соответственно 3 000 и 5 000 циклов.

Усилие уплотнения на седле кран-клапана более чем в 3 раза меньше, чем у сегментного крана, что приводит, соответственно, к меньшему моменту управления. Не использованный резерв допустимого удельного давления 1000 – 256 = 744 МПа способствует увеличению среднего ресурса, надежности и безопасности. Кроме того, конструктор может по своему усмотрению менять материал или принимать большее фактическое удельное давление для увеличения порога рабочего давления арматуры, например, для использования в технологии гидроразрыва пласта.

В таблице приводится качественная оценка характеристик разных типов арматуры по пятибалльной шкале относительно среднего значения параметра.

Cтруктура дизайна инновации: проектирование, производство, маркетинг и эксплуатация

Проектирование. Новая арматура практически целиком базируется на применении существующих нормативов, расчетных методик, материалов, решений, применяемых в шаровых и сегментных кранах и вентилях. На диаграмме показаны доли вкладов вентиля, сегментного крана и предлагаемого механизма кинематики в общее конструктивное решение инновации, определившие новое качество арматуры (рис. 6).

Производство. Кран-клапан, так же, как и вентиль, относится к системе с минимальными двумя функциональными уплотняющими поверхностями. В отличие от шарового крана с тремя поверхностями и задвижки с четырьмя. Это предопределяет более высокую технологичность производства. «Практика подтверждает высокую зависимость возрастания технологических проблем с ростом количества функциональных уплотнительных поверхностей» [7 с. 158-169].

Значительно упрощается технология получения качественной контактной поверхности нужной волнистости и шероховатости только узкого пояска, а не всего сегмента. Резко уменьшается номенклатура моделей арматуры и составляющих компонентов и деталей. Существенно упрощается изготовление за счет лучших коэффициентов технологичности конструкции, сборности и точности обработки [7, с. 161].

Семенов В.Ф., Сызранцев В.Н. Кран-клапан vs. Время собирать камни

Маркетинг. В любых вариантах гарантируется улучшение герметичности, ресурса, надежности и безопасности. В большинстве случаев покупатель получает более высокое качество при аналогичном или чаще более низком уровне цены от замещаемой арматуры в виде задвижек и шаровых кранов. С учетом стоимости привода стоимость комплекта арматуры выгодна еще больше за счет использования привода меньшей мощности.

Часть шаровых кранов с ручным (обычно червячным) приводом можно заменять на кран-клапаны с рукояткой за счет встроенного усилителя момента. В этом случае разница в цене может быть выше более чем в 2 раза. Для Российской Федерации исключительно важна длительная патентная защищенность нового бренда от контрафакта.

Эксплуатация. Увеличение среднего ресурса позволяет потребителю кардинально снизить общие затраты на эксплуатацию арматуры, диагностику и ремонт.

Перспективы

Технический эффект арматуры с ограниченным трением подтвержден выпуском кранов Orbit и 3-х эксцентриковых затворов.

Предлагаемая инновация, упрощая 2-х фазную конструкцию, дополнительно объединяет лучшие качества вентилей, шаровых кранов и заторов и тем самым в большинстве случаев замещает их.

Одновременно существенно снижаются издержки производства и затраты потребителя на закупку и эксплуатацию.

Семенов В.Ф., Сызранцев В.Н. Кран-клапан vs. Время собирать камни

Сегодня для сокращения сроков изготовления, испытаний опытного образца и последующего внедрения новой арматуры требуется инициатива не столько производителя, сколько заинтересованность главных механиков и экономистов предприятий нефтегазовой, энергетической, химической и других отраслей.

Иначе «никогда этого не было, и вот опять» и «заграница нам поможет».

Литература

1. Афанасьева, О.В. Обзор российского рынка трубопроводной арматуры в 2018 году. Часть 1 / О.В. Афанасьева, А.А. Бакулин, С.Б. Коркунов // Арматуростроение. – 2019. – № 3 (120). – С. 44-46.
2. Сейнов, С.В. Характер контактного взаимодействия уплотнений затвора клиновой задвижки / С.В. Сейнов [Электронный ресурс] // НПО «ГАКС-АРМСЕРВИС». URL: https://gaksnpo.ru/ (дата обращения 02.06.2020).
3. ORBIT Valves Unique tilt-and-turn design for fast, low-torque operation and long-term, reliable performance in applications when zero leakage and frequent operation are demanded [Электронный ресурс] // CAMERON. URL: https://www.products.slb. com/-/media/productsslb/files/brochure/valves/orbit-valves-br. ashx (дата обращения 02.06.2020).
4. Клекович, Д. Бесконтактное вращение запорного органа как способ предотвращения утечки по седлу / Д. Клекович // Вестник арматуростроителя. – 2020. – № 5 (47). – С. 24-25.
5. Суриков, В.Н. Дисковые поворотные затворы или шаровые краны? Проблемы выбора арматуры для систем автоматического регулирования / В.Н. Суриков, С.Л. Горобченко, Е. Торопова [Электронный ресурс] // Cyberpedia. su. URL: https://cyberpedia.su/13x8dd0.html (дата обращения 02.06.2020).
6. Гуревич, Д.Ф. Расчет и конструирование трубопроводной арматуры / Д.Ф. Гуревич. – Л. : Машиностроение, 1969. – 887 с.
7. Сейнов, С. В. Техническое диагностирование арматуры АЭС / С. В. Сейнов. – М. : Машиностроение, 2012. – 451 с.
8. СТАНДАРТ ЦКБА 068-2008. Арматура трубопроводная. Затворы запорных клапанов с уплотнением «металл по металлу». Технические требования. – Санкт-Петербург : НПФ «ЦКБА», 2008. – 20 с.
9. СТАНДАРТ ЦКБА 096-2012. Арматура трубопроводная. Зависимость среднего ресурса затвора от величины удельных нагрузок на уплотнительные поверхности. –Санкт-Петербург : НПФ «ЦКБА», 2012. – 9 с.
10. СТАНДАРТ ЦКБА 086-2010. Арматура трубопроводная. Технические данные и характеристики для силовых расчетов арматуры. – Санкт-Петербург : НПФ «ЦКБА», 2010. – 35 с.
11. СТАНДАРТ ЦКБА 018-2018. Арматура трубопроводная. Клапаны запорные сальниковые с ввинчиваемым шпинделем (золотник и шпиндель соединены не жестко). Методика силового расчета. – Санкт-Петербург : НПФ «ЦКБА», 2018. – 14 с.
12. СТАНДАРТ ЦКБА 115-2015. Арматура трубопроводная. Краны шаровые. Методика силового расчета. – Санкт-Петербург : НПФ «ЦКБА», 2017. – 31 с.
13. Патент № 2720061, Роспатент, 2020 г.
14. Международная заявка № PCT/RU 2020/050061.
15. Дисковый затвор HGT. Производитель АПА (Россия) [Электронный ресурс] // ООО «Автоматизация и промышленная арматура». URL: https://apa-valves.ru/ items/diskovyj-zatvor-hgt-apa/ (дата обращения 02.06.2020).
16. Седельные шаровые краны с металлическим седлом FOYO [Электронный ресурс] // FOYO Valve Co. URL: www.foyovalve.com/china/ metal-seated-segment-ball-valves (дата обращения 02.06.2020).


Размещено в номере: «Вестник арматуростроителя», № 4 (60) 2020


Метки Арматуростроение трубопроводная арматура шаровые краны журнал запорная арматура клапаны Вестник Арматуростроителя запорно-регулирующая арматура журнал "Вестник арматуростроителя" статьи кран-клапан

Смотрите также:
ТНФ-2020. Интервью с техническим директором ООО «Самсон Контролс» Алексеем Логиновым ТНФ-2020. Интервью с техническим директором ООО «Самсон Контролс» Алексеем Логиновым
Перед вами новое интервью медиагруппы ARMTORG с Татарстанского нефтегазохимического форума, в рамках которого технический директор ООО «Самсон Контролс» Алексей Логинов рассказал о деятельности компании.
Медиагруппа ARMTORG. Периметр 2020. Развитие арматуростроительных предприятий. АО «Благовещенский арматурный завод» Медиагруппа ARMTORG. Периметр 2020. Развитие арматуростроительных предприятий. АО...
Следующая статья из четвертого выпуска журнала «Вестник арматуростроителя» посвящена тому, как с кризисом 2020 года справился Благовещенский арматурный завод и по каким направлениям развивалось его производство.
Специалисты Группы ЧТПЗ получили четыре медали чемпионата «Молодые профессионалы» Специалисты Группы ЧТПЗ получили четыре медали чемпионата «Молодые профессионалы»
Команда Группы ЧТПЗ одержала несколько побед в финале VIII национального чемпионата «Молодые профессионалы» (Worldskills Russia). Работы участников оценивали более 700 экспертов из разных стран.
Последние добавления библиотеки(Предложить книгу)